Hacking the Climate: can geoengineering solve climate change?


As humans marvel at their prowess in producing electro-mechanical creations, along with advances in materials engineering and synthetic chemistry, it may seem logical to address the problem of Earth’s changing climate purely as a technological problem to be solved at the global level, writes Ryan Stevenson. This avenue of thinking is quietly growing due to the risks of politicians dawdling and carbon emissions continuing unabated.

This way of thinking is called geoengineering, which is to deliberately intervene at a large scale in the planet’s natural systems to counteract climate change. There are annual conferences, research programmes at Oxford University, funding by the UK’s Engineering and Physical Sciences Research Council (EPSRC) and by billionaires, such as Bill Gates. Current research is to determine the feasibility of large-scale intervention.

In 2009 the Royal Society published a report titled Geoengineering the Climate, and out of this grew research projects such as solar radiation management i.e. limiting how much sunlight the whole planet receives.

One such project is called SPICE (Stratospheric Particle Injection for Climate Engineering) which is a collaboration between the Universities of Bristol, Cambridge, Edinburgh and Oxford along with the MET Office and Marshall Aerospace. The idea is to release reflective aerosol particles into the atmosphere decreasing inbound radiation.  Other types of projects relate to carbon dioxide removal, such as seeding the oceans with iron to create phytoplankton blooms.

Geoengineering is the deliberate intervention at a large scale in the planet’s natural systems to counteract climate change.

Last year the US National Academy of Sciences released a report saying fiddling with the global climate now would be “irrational and irresponsible”, however, this was due to our lack of scientific knowledge, and thus urged policy makers to commit to geoengineering research now so that should it become needed, when all other plans fail, it will be a more informed decision. These research groups have experienced scientists on board, complete with ethics committees. This all sounds like a worthy research cause…or does it?

Firstly, let’s look at some practical and ethical issues surrounding the research, and secondly, the underlying narrative behind this way of thinking.

  1. Distributional Consequences

Countries may seek to control inbound radiation affecting their own landmass, however models have shown this to be highly disruptive to the climate in other parts of the world. This likely means developing countries due to their lack of resources, and how does one prove country A caused the severe storm in country B? This thinking also applies with ocean fertilisation.

  1. Conducting Experiments

Due to the size of the planet, physical tests done in the laboratory or even in a city will be largely meaningless when it comes to predicting global effects. This means a reliance on computer models until initiating the experiment in full – which is extremely risky.

  1. Solving the Root Problem?

Even if effective aerosols are launched or iron particles seeded, the root cause of carbon emissions will still be continuing with all the same political problems, plus now a distorted climate. As Naomi Klein drily notes, it means solving the pollution problem…with more pollution.

Removal of carbon dioxide from the atmosphere is the other proposed method of climate intervention, which the IPCC says is needed for most pathways towards a stable climate. One risky method already mentioned is ocean fertilisation, but others are more benign, for example, carbon capture and storage and expanding the use of bioenergy. Reforestation, while not a technology, is surely the most sensible of this type of intervention as it is beneficial to other life forms while naturally absorbing carbon.

The thinking behind a large-scale, technological, magic fix is not new. Its roots lie in religions’ portrayal of man’s dominion over Nature, patriarchal systems of thought, in our educational systems adherence to rationalism and materialism to the exclusion of intuitive appreciations of the natural world, and to centralised and decentralised economic systems that view Nature as a commodity, a thing to be used or controlled.  The difference is that now we have the technological capability to cause massive change, after all, one could argue that carbon emissions were an unconscious experiment in geoengineering.

A large failing behind some of these research ideas is an understanding of ecology and interdependence. Life on this planet does not depend upon one factor, and we cannot simply treat our species as a separate system from this delicate and intricate web of interaction. Life has evolved over 3.5 billion years with a vast multitude of its own experiments and optimisations that we ourselves are a part. To alter one parameter is to change all the rest.

The key problem is one of relationship. If we understood that solutions require working with Nature, rather than against, this type of thinking would not arise. Let us not force the hand that feeds us.